对陶瓷电容器施加直流电压时,容值为啥变小
电容器的温度特性是以作为电介质材料的陶瓷种类为准。主要使用的陶瓷种类为类型1(低介电常数)以及类型2(高介电常数)。 类型1的陶瓷是以二氧化钛(TiO2)为基材的非强介电性陶瓷,其中多数含有添加物钛酸锶(SrTiO3)以及钛酸钙(CaTiO3)。类型1的陶瓷为中介电性(非强介电性),因此温度稳定性十分优秀。此外,DC偏压下静电容量不会发生变化,同时静电容量也不会因老化发生变化。 类型2,其高介电常数系列的电容器(B/X5R特性或E/Z5U、R/X7R、F/Y5V特性),由于施加直流电压,其静电容量有时会不同于标称值,因此应特别注意。 例如,如下图所示,对高介电常数系列电容器施加的直流电压越大,其实际静电容量越低。下图是横轴表示施加在电容器的直流电压(V),纵轴表示的是相对于初始值的静电容量的变化情况。如图所示,根据所施加的电压,其静电容量发生变化的特性称为"DC(直流)偏压特性"。 根据上述内容,在使用高介电常数系列电容器时,应充分考虑其实际工作状态下,施加在电容两端的直流电压。 此外,对于DC偏压特性,是普遍现象,在所有高介电常数系列电容器中都有此现象。可以通过软件来确认偏压特性、温度特性以及频率特性。例如村田提供SimSurfing。各个厂家都会提供相应的表格或者工具。 关于DC偏压特性的原理 陶瓷电容器中的高介电常数系列电容器,现在主要使用以BaTiO3 (钛酸钡) 作为主要成分的电介质。 BaTiO3具有如下图所示的钙钛矿(perovskite)形的晶体结构,在居里温度以上时,为立方晶体(cubic),Ba2 离子位于顶点,O2-离子位于表面中心,Ti4 离子位于立方体中心的位置。 上图是在居里温度(约125℃)以上时的立方晶体(cubic)的晶体结构,在此温度以下的常温领域,向一个轴延长,其他轴略微缩短的正方体(tetragonal)晶体结构。 此时,作为Ti4 离子在结晶单位的延长方向上发生了偏移的结果,产生极化,不过,这个极化即使在没有外部电场或电压的情况下也会产生,因此,称为自发极化(spontaneous polarization)。像这样,具有自发极化,而且可以根据外部电场转变自发极化的朝向的特性,被称为强诱电型(ferro electricity)。 自发极化 在一定温度范围内、单位晶胞内正负电荷中心不重合,形成偶极矩,呈现象极性。这种在无外电场作用下存在的极化现象称为自发极化。当施加外界电场时,自发极化方向沿电场方向趋于一致;当外电场倒向,而且超过材料矫顽电场值时,自发极化随电场而反向;当电场移去后,陶瓷中保留的部分极化量,即剩余极化。自发极化与电场间存在着一定的滞后关系。它是表征铁电材料性质的必要条件。铁电陶瓷、压电陶瓷,如钛酸钡晶体BaTiO3等具有自发极化。利用材料的这种性质,可制作电子陶瓷,如电容器及敏感元器件。
就是在压电陶瓷上加一强直流电场,使陶瓷中的电畴沿电场方向取向排列,又称人工极化处理,或单畴化处理。 为了使压电陶瓷处于能量(静电能与弹性能)最低状态,晶粒中就会出现若干小区域,每个小区域内晶胞自发极化有相同的方向,但邻近区域之间的自发极化方向则不同。自发极化方向一致的区域称为电畴,整块陶瓷包括许多电畴如图所示。 极化前,各晶粒内存在许多自发极化方向不同的电畴,陶瓷内的极化强度为零,如图(a)所示。极化处理时,晶粒可以形成单畴,自发极化尽量沿外场4方向排列,如图(b)所示。极化处理后,外电场为零,由于内部回复力(如极化产生的内应力的释放等)作用,各晶粒自发极化只能在一定程度上按原外电场方向取向,陶瓷内的极化强度不再为零,如图(c)。这种极化强度,称为剩余极化。 与单位体积内的自发极化的相转变相同的是电容率,可视为静电容量进行观测。当没有外加直流电压时,自发极化为随机取向状态,但当从外部施加直流电压时,由于电介质中的自发极化受到电场方向的束缚,因此不易发生自发极化时的自由相转变。其结果导致,得到的静电容量较施加偏压前低。 这就是当施加了直流电压后,静电容量降低的原理。 此外,对于温度补偿用电容器(CH、SL特性等),以常诱电性(低介电常数)陶瓷作为主要原料,静电容量不因直流电压特性而发生变化。 DC偏置使得介质内的固定电荷产生固定偏转,所以材料的性能会退化。高偏置的强电场让介质定向极化,材料就退回到普通陶瓷的情况了。 如果我们在电容两端施加交流信号,则会出现电容值增大的现象。交流信号让介质中的“固定”电荷来回换向,从而影响材料内的电场分布,“吸附”更多的电荷。AC幅值增加,“电荷”方向和电场越一致,附加的电场强度上升,可用容量增加;但是当介质中固定电荷场强一致之后,这个效益就很小了,所以AC容量特性会饱和,不再继续增大。 |