开关和监视高达1000V的高压DC电源
数百伏的 DC 电源并非如人们想象的那样不常见。也许首先进入脑海的一种应用是电动型汽车,在这种汽车中,锂离子电池组的电压范围高达 400V。不过一些不那么为人熟知的高压应用出现在现代战机中,例如 F-22 猛禽 (F-22 Raptor) 和 F-35 闪电 II (F-35 Lighting II),这些战斗机主要由 270V DC 电源供电,以实现更快速、精准的性能。大型太阳能阵列可以输出 600V 或更高的电压,而对工业电机驱动器中的 AC 电压整流,可产生范围为 170V 至 680V 的 DC 电压。 很多年来,人们一直在开展研发工作,以将数据中心的配电从 AC 变为高压 DC (380V 或 ±190V),从而减少电源转换步骤、设备占用空间和运行成本,同时方便与太阳能等可再生能源整合。以较高电压配电降低了电流值,从而降低了电阻性损耗 (I2 • R),这个特点可用来减轻电缆重量。所有这些高压电源都需要开关和软启动以给负载供电。就能量监视和优化而言,以数字化方式监视在高压总线上的电压和电流是必不可少的。任何控制这些电源的电路都必须是电气隔离的,以保证操作人员的安全,并针对危险的高压对低压电子组件提供保护。 控制浪涌电流和监视电源的方法 设计高压电源时,一个重要的目标是安全地控制进入电容性负载的启动浪涌电流,例如典型桥式整流器后面跟随的 DC 总线电容器。一种降低浪涌电流的简单方法是,使用负温度系数 (NTC) 热敏电阻器,也称为浪涌电流限制器 (ICL,图 1a)。在电源或负载接通之前,这些热敏电阻器在室温时有很大的电阻 (例如几欧姆);大电阻限制了接通时的浪涌电流。随着电流流过,热敏电阻器温度升高,其电阻也随之减小一至两个量级 (减小到 1/10 至 1/100,变为低于 1 欧姆)。这些热敏电阻器的价格在每个 0.13 美元至 7 美元之间,视电流和电阻额定值的不同而不同。尽管简单易用,但问题是,快速电源周期 (接通 - 断开 - 接通) 也许导致在第二次加电时无法限制浪涌电流,因为热敏电阻器可能没有充足的时间冷却至大电阻状态。NTC 热敏电阻器有很宽的容限 (±25%),而且因为浪涌电流通过电阻下降率与稳态电流相联系,所以浪涌电流不能灵活地调节至任意低的值。ICL 在吸尘器、荧光灯和开关模式电源中都有应用,在这些应用中降低了桥式整流器 DC 总线电容器的浪涌电流。 为了克服 NTC 热敏电阻器在快速重启时没有浪涌电流限制这个缺点,使用了一个与该电阻器并联的短接继电器。这个继电器称为阶跃启动继电器 (图 1b)。在接通时,并联中继器开路,浪涌电流由电阻器限制。一个定时器也同时启动,当定时器到期时,继电器短接电阻器。负载电流现在流经继电器。在快速重启时,阶跃启动继电器能够提供浪涌限制。这种方法需要增加一个短接继电器和一个控制继电器接通的定时器。由于复杂性提高,解决方案的成本也提高到了 20 美元至 30 美元范围。 其他浪涌电流控制方法包括过零可控硅、有源功率因数控制电路和具阻尼的电感性输入滤波。这类方法大多数是复杂、笨重、昂贵,且仅适用于 AC 输入。 一种用于隔离式电流监视的方法是,跨电流检测电阻器两端使用一个隔离放大器以及用一个差分至单端转换放大器给 ADC 馈电。另一种方法是,使用一个隔离式增量累加 (ΔΣ) 调制器和一个外部数字滤波器。 正如已经看到的那样,控制、保护和监视高压 DC 电源需要将很多组件拼凑到一起,并让这些组件安全和无缝地运行。这不是微不足道的任务。这类分立式解决方案尺寸大、组件密集、价格昂贵而且缺乏安全认证。人们需要一种集成式和经过认证的解决方案,以将设计时间和认证工作从多个月缩短到几周时间。 图 1:浪涌控制限制器。(a) 负温度系数 (NTC) 热敏电阻器;(b) 阶跃启动继电器 用于高压电源控制和遥测的集成式解决方案 |