浅谈磁性元件在汽车技术
时间:2022-03-13来源:佚名
能源汽车不断得到发展,包括混合动力汽车(HEV)、增程式混合动力汽车(PHEV)、纯电动汽车(EV)以及燃料电池车(FCV)等,在这些新能源汽车中,需要使用到不同电压等级的电源系统,如AC/DC、DC/DC 、DC/AC变换器都使用磁性元件。 其中DC/DC变换器成为新能源汽车设计开发不可或缺的关键部件,而功率电感是DC/DC变换器不可或缺的器件,可以提供大电流,高电感,其通过积累并释放能量来保持连续的电流。作为电动汽车的供电设备,DC/DC变换器也给车载电子设备供电。根据纯电动汽车车载电子设备不同属性,可把用电设备分为长期用电设备、连续用电设备、短时间间歇用电设备和EV附加用电设备等四种类型,如下图所示。同时,DC/DC变换器的体积和种类都很小且输出稳定。可分以下三种拓扑方式 a)BOOST DC/DC 新能源汽车上使用的BOOST DC-DC变换器主要用于高压系统的升级,将动力电池系统的电压等级再行升高, 以匹配更高等级的电机驱动系统。BOOST DC/DC 变换器的系统结构图下图所示。 BOOST DC/DC 变换器有如下的特点: 1)需要能够控制功率流的双向流动,以能确保动力电池的充放电功能; 2) 功率大小需要匹配电机驱动系统的功率需求,一般与电机驱动系统集成设计, 共用其冷却方式; 3)采用非隔离的设计拓扑方式,一 般 采 用 普 通 的BUCK-BOOST 拓扑方式, 设计较简单; 4)电路拓扑简单,但在整车设计开发中需要配合动力电池和电机驱动系统一起来控制, 配合整车方面的控制较为复杂。 在汽车应用中,目前车灯广泛采用LED光源,因此会用到Boost DC/DC和Buck DC/DC等转换器。 b)BUCK DC/DC BUCK DC/DC变换器一般代替传统汽车的交流发电机,提供低压蓄电池及低压电器设备的电源。由于是高压系统转换为低压安全系统,这类DC/DC变换器一般需要进行隔离化设计,相比BOOST DC/DC变换器而言整体效率有所下降,但总的设计功率也小很多,一般为1.5kW到2.5kW左右,设计功率以匹配整车低压电器负载为原则。 BUCK DC/DC变换器一般采用三种拓扑设计:全桥变换器、半桥变换器和组合式正激变换器。其中全桥和半桥变换器设计的变压器磁芯双向磁化,磁芯利用率高,功率管使用较多,有桥臂直通的风险,控制及驱动较为复杂,比较适应大功率输出的设计,如国外的整车厂商一般采用此拓扑,功率等级都在2kW以上,通过复杂的控制,可以实现功率流的双向变换。国内的整车厂商从成本和设计可靠性考虑,一般使用组合式的正激变换器拓扑,功率等级限制在2kW以内,只能实现能量的单向流动,设计上简单,功能上可靠。 在汽车应用中,BMC、VCU等方面会用到Buck DC/DC变换器,如将12V蓄电池电压转为5V电压,来给相应电路供电。 c)BOOST-BUCK DC/DC 由于车内的低压电器设备较多,在不同的工况下的低压功率需求差异很大,即使有 12V蓄电池稳压的情况下,仍不能保证 12V的低压电源是稳定可靠的,如在起动机启动引擎时候,蓄电池瞬间可以跌落到6V,这样使用低压稳压的DC/DC 变换器来进行有效的稳压变得必要。如一些高级配置常规车,配备低压稳压的DC/DC变换器,提供车载电脑的稳压;新能源汽车中控制动力分配、驱动的核心单元,使用低压稳压的DC/DC变换器来稳压,以提供整车系统的稳定可靠性。 如以下DC/DC电源包含大部分磁性元件产品,有多种电感和高频变压器组成。 |