锂硫电池的穿梭效应理解
电化学储能器件的发展对新能源的高效利用有着至关重要的作用。其中,锂离子电池已经得到了广泛的应用。然而现行锂离子电池的能量密度依然不足以满足许多应用需求,因此,理论能量密度高达2600Wh/kg的锂硫电池得到了广泛的关注和研究。然而锂硫电池在实际应用中,易溶于电解液的多硫化物(中间产物)形成“穿梭效应”会直接导致差的电池循环寿命。因此,如何抑制多硫化物的穿梭在锂硫电池正极研究中至关重要。 穿梭效应,指的是在充放电过程中,正极产生的多硫化物(Li2Sx)中间体溶解到电解液中,并穿过隔膜,向负极扩散,与负极的金属锂直接发生反应,最终造成了电池中有效物质的不可逆损失、电池寿命的衰减、低的库伦效率。 为了抑制穿梭效应,主要是在正极用高比表面积的具有孔结构的载体(如石墨烯、碳管等)对硫和多硫化物进行物理吸附和禁锢,再进一步的是对载体进行化学修饰,修饰上活性位点,以实现化学吸附。 有效抑制锂硫电池“穿梭效应”的新策略 锂硫电池因其理论能量密度(2500Wh/kg)远高于现有锂离子的能量密度(200Wh/kg)而成为锂离子电池最具前景的替代者。然而Li-S电池在锂化/脱锂过程中,在硫正极和锂负极之间溶解的多硫化物(PSs)所引起的“氧化还原穿梭效应”导致它们在实际应用中的循环寿命较短。 人们已经采取各种方法去改善上述问题,其中最普遍的策略是采用具有高比表面积的纳米结构碳材料,通过物理限制作用进行PS的捕获。另一种有效的方法是使用极性材料通过化学相互作用进行PS的捕获。 但碳的非极性通常导致循环性能不佳,极性材料的低电导率导致硫的利用率低,倍率性能差。碳材料与PS的结合能力可以通过元素的掺杂、分层结构、石墨烯的包覆等来改善,极性材料的电导率可以通过氢还原(氢化O2)或独特的碳/极性材料杂化结构来改善。 但这些复杂的制备过程降低了其可行性,因此有必要开发一种简单但可以显著提高硫正极的循环性能,同时保持良好倍率性能的有效材料制备方法。 |