变频电源设计:整流、驱动、逆变、滤波模块详述
变频电源自从问世以来在世界各国都倍受关注。它可以根据客户的不同要求通过交直交的变换技术,将给定的交流电转换成频率和电压在一定范围内可调的交流电,而且其谐波含量很少。因此,它的开发与应用发展前景十分诱人。 功率器件的性能指标决定变频电源的发展。20世纪60 年代,GTO 的问世实现了门极可关断功能。70 年代中期,功率金属氧化物场效应管和高功率晶体管的问世,实现了场控功能,至此打开了高频的大门。到80年代,一种兼具MOSFET和GTR 二者优点的IGBT电力器件出现,其栅极采用电压控制,驱动功率小;工作频率高,开关损耗小;没有二次击穿,是目前功率电力电子装置中的主流器件。当代,随着不断革新的功率器件的出现,美日欧等大规模集成脉宽调制电路、零电压、零电流变换的拓扑电路和DSP、ARM 等智能处理器的广泛应用,使得电源逐渐朝着小型化、集成化、智能化方向发展。国内变频电源产业发展虽只有十几到二十年的历史,但业绩甚佳,也在开关频率方面达到了前所未有的地步,一定程度上降低了原材料的消耗,使装置小型化,加快了系统的动态响应速度,提高了电源的效率。 本文搭建了一个基于DSP的变频电源的实验装置,下面将详细介绍变频电源整流、驱动、逆变和滤波等各个模块的原理图设计。 1 硬件电路设计 变频电源结构框图如图1 所示。本文中变频电源输入频率为市电频率50 Hz,输出频率为60 Hz。由图1可以看出,整个变频电源的硬件部分由整流模块、逆变模块、隔离驱动模块和滤波模块组成。
图1 变频电源结构框图 1.1 整流模块设计 常用的三相桥式整流电路大致可以分为三种:不控整流、全控整流、半控整流。它们的电路结构均是一样的,如图2所示,只是所使用的整流元器件不同。三相桥式不控整流电路的整流器件是普通的电力二极管,是不可控的器件。当它承受正向电压时会立即自然导通,承受反向电压时会立即阻断,电路设计简单,功耗较小。其输出电压的平均值可以表示为:
式中U2 为交流侧相电压的有效值。
图2 三相桥式不控整流电路 三相桥式全控整流电路的整流管全为可控的晶闸管开关器件,桥式半控整流电路的整流管为可控的晶闸管和不控二极管的组合。开关器件晶闸管开通必须具备两个条件:正向电压;触发电流脉冲。这就要求在整流时要附加脉冲产生电路,时间上会产生延迟,也就是延迟触发角。综合分析以上三种整流方式可知:桥式不控整流电路设计简单,功耗小;而全控和半控整流电路控制复杂,晶闸管在导通后功耗相对较大,触发角控制不好会使电路出现断续现象,所以本文采用简单的三相桥式不控整流电路。 整流之后由于脉动电压比较大,本文选取并联电容进行滤波。电容作为储能元件,具有隔直通交、隔低频通高频的功能。在电压型整流电路中,为使输出电压更加平滑,理论上滤波电容取值越大越好。然而实际工程上并不希望这样,因为电容值越大,其体积越大,成本越高,性价比反而越低,而且在电路接通瞬间,瞬时电流非常大,会破坏元器件。根据文献[1],选取滤波电容的值为1 650 μF,考虑到耐压值越高价格也越高,选用两个3300 μF的电容串联,以此来平分电压,如图2所示。 1.2 驱动模块设计 IR2130 可用来驱动工作在线电压不高于600 V 的电路中的功率MOS门器件。 其内部结构框图如图3所示。 在本文中应用IR2130时,应注意以下几点: (1)因为IR2130内部的三路驱动高压侧电力MOS管的输出驱动器的电源是通过自举技术来获得的,为防止自举电容两端电压放电,二极管应选用高频快恢复二极管。为防止自举电容放电造成其两端电压低于欠电压保护动作的门槛电压值,电容的取值应充分大,当被驱动的功率MOS器件的开关频率大于5 kHz时,该电容值应不小于0.1 μF,如图4所示。 (2)由于IR2130内部的6个驱动器输出阻抗较低,直接应用它来驱动电力MOS 管会引起被驱动的电力MOS 器件的快速开通和关断,这有可能造成被驱动的电力MOS管漏源极间电压的振荡。为了避免这种现象的发生,可在被驱动的电力MOS管栅极与IR2130的输出之间串联一个15~22 Ω、功率为1/4 W的无感电阻(对电流容量较小的电力MOS 管,该电阻值可增加到30~50 Ω),如图4所示。
图3 IR2130内部结构图
图4 IR2130驱动电路 |