新一代电源模块有效简化电源设计
电源模块的基本优势在于把系统设计人员从繁琐的电源设计中解放出来,专注核心IP开发。现在,传统的商用PCB电源模块和组件已经让位于更好、更小的“系统级封装”模块。 新一代电源模块充分考虑了当前面临的设计挑战。先进的技术优势使得这些模块更容易使用,同时也减小了总体尺寸并降低BOM。新一代电源模块具有比以往产品更高的效率,提供引脚兼容的设计来满足不同电压、电流要求,可方便移植的解决方案有效降低成本。 电源设计:并非易事 从零开始设计一款可靠的电源并非易事,尤其是涉及到开 关稳压集成电路(IC)时。典型设 计是分立元件的复杂组合,要求具备较高的专业知识和经验,以保证电路无故障供电。电源在 系统中举足轻重,可能会延长 产品上市时间,如果处理不当 ,甚至会造成系统现场失效。 此外,分立电源设计要求许多外部元件,需要花费时间和精力采购、管理库存以及安装,很难保证整体可靠性。分立电源设计也往往意味着PC板布局面积较大,占用宝贵的基板面积,而空间在任何时候都非常珍贵。 电源模块是解决途径 更小尺寸的工艺、IC设计以及封装优势允许模块制造商将电源所需的无源元件及基础功能IC集成到单一芯片,构成小尺寸电源。同步开关稳压器内置FET,比老式开关电源尺寸更小、效率更高、准确度更高。最新的电源模块将新型同步开关与电阻、电容、MOSFET、电感等元件整合在一起,组成简单易用的电源模块,减小尺寸、降低成本和布局复杂度。 电源模块也有差别 现在市场上的许多电源模块仅仅是比IC更容易使用,但并未完全解决所有难题。理想的模块可加速产品上市时间,并兼具低成本等关键优势,例如: ·高效率与低功耗,基于经过客户验证的可靠IC ·小尺寸,集成更多元件 ·容易使用,引脚兼容方案支持不同的电压、电流要求,提高设计灵活性 ·灵活性,可选择低成本移植,从模块至IC,实现批量生产 图1.电源模块整合构建完备电源所需的全部主要器件 由此形成可靠的新一代系统级封装(SiP)电源模块,避免分立设计问题,同时也解决了上述问题,允许工程师将时间投入到其它关键领域(图1)。 经过验证的同步稳压器是设计保障IC工艺和设计的改进推动了开关电源中MOSFET晶体管的集成,这种集成又进而推动了同步整流电源的开发,彻底改变了DC-DC电源市场,尤其是高压应用领域。最新的同步降压转换器具有出色的高效率、低温工作以及较小尺寸。 同步电源IC相对于非同步电源IC的优势 图2所示为同步与非同步电源设计之间的差异。传统的非同步转换器使用外部肖特基二极管进行整流,并在高边晶体管关断期间续流。理论上,该技术比较简单。不幸的是,实际应用中难以设计——控制更加困难,即使该方法已经普遍采用了数十年。其最大的缺点是二极管由于正向偏压的原因发热量巨大,所以造成系统效率极低。 同步转换器集成了低边功率MOSFET,代替外部整流二极管。与非同步转换器的二极管相比,MOSFET的低电阻压降小很多;MOSFET也可在不需要时关断。所以,大幅减小转换期间的功率损耗。这意味着电路发热更低——效率更高。低边整流MOSFET和传统的外部元件成为IC本身的一部分。 为了更好地理解该技术的益处,我们简单计算一下功率损耗,将同步与非同步方案进行比较。 根据计算结果可知,同步整流方案将整流二极管的功耗降低了60%!很伟大——毫不夸张! 对应的热图像清晰表明,与非同步方案相比,同步DC-DC转换器工作时的发热更少。由于温度会缩短电子元件的使用寿命,这一点非常重要。引用Svante Arrhenius的一句话:“温度每降低10度,电路寿命将延长一倍。”假设温差相差30°C,那么同步方案的寿命将是非同步方案的8倍。 图2.同步与非同步整流功耗比较 通过集成补偿电路,同步整流提高了反馈调节精度。更重要的是,整个输出电压范围的内部补偿省去了外部元件,显著减少元件数量,缩小外形尺寸。附加利益是高精度内部电压基准,实现更高精度的稳压——在扩展工作温度范围内接近±1%。 使用这些带同步整流的新型集成FET开关稳压器作为电源模块的基础,电源能够提供高效、低温升、小尺寸等优势,并具有更高的稳压精度。例如,Maxim将喜马拉雅IC与其它元件集成在一起,构建喜马拉雅家族电源模块。 |