高精度开关稳压电源设计方案
稳压电源设计和实验对于从事电源研发行业的工程师们来说,无论在细节上还是在实验测试方面,都需要严格对待,开关稳压电源设计的过程更是如此。如何才能让自己所进行的高精度开关稳压电源设计方案更具备可行性?主电路应该如何设置才能让方案更加完美?本文将会为大家分享一种稳压电源设计方案,一起来看看吧。 首先来看开关稳压电源设计的主电路设置。在该高精度方案中,主电路的构成包括电网噪声滤波器、输入整流滤波、软启动、桥式逆变电路、高频变压器和输出整流滤波。下图中图1为该方案的设计框图,主电路如图所示。从图2中我们可以看到,在这一开关电源电路系统中,晶闸管TR与电阻R1构成缓冲电路,以防止开机瞬间过大的电流冲击滤波电容和整流桥,待输出电压建立后,由高频变压器次级增设的一个绕组中取出脉冲电压,经半波整流后控制晶闸管的门极,触发导通晶闸管,实现软启动。 图1 开关稳压电源设计框图 图2 开关稳压电源主电路图 在该高精度稳压电源设计的主电路设置中,系统的整流电路由全控硅整流桥完成,在运行中可以实现较宽的调压范围。整流桥由智能型触发器控制,该触发器采用锁相控制的模拟—数字触发电路,脉冲对称性相对较好,并设有同步变压器、过压/过流保护、电压/电流PI调节、触发单元、脉冲变压器等,可以实现限压恒流或限流恒压控制。在开关器件的选择方面,该方案中我们选用的是富士公司生产的IMB175120IGBT模块,在每个开关器件的两端并联了RCD尖峰电压吸收网络。 下面我们来看一下驱动电路的设计思路。在该开关稳压电源设计方案中,我们主要采用的是IGBT模块作为大功率开关器件。IGBT同时具有GTR和MOSFET的优点,输入阻抗高、驱动功率小,且其载流能力比较强。该方案中,逆变器的驱动电路如图3所示。本方案中采用IGBT专用驱动电路EXB840,EXB840内部含有-5V的稳压电路,为IGBT提供 15V的正向驱动电压和-5V的反向驱动电压,使IGBT可靠关断。驱动电路EXB840可以通过恢复二极管D1检测IGBT的CE端电压,当电流过大时,内部的过流保护电路使IGBT的驱动信号降为零。 图3逆变器的驱动电路 |