基于峰值控制的IGBT串联均压技术
1、引言 随着电力电子技术的发展,高压大功率设备对IGBT的耐压等级提出更高要求,故IGBT串联技术成为研究热点之一。IGBT串联应用的关键问题是实现均压。在众多IGBT串联均压技术中,最简单、可靠的方法是并联RC缓冲回路。但在高压场合,考虑到损耗、体积及造价等因素,无RC缓冲回路的均压方法更实用。此外,基于电压轨迹控制和门极信号延时调整等有源方法,因控制电路过于复杂,使用场合受到限制。故有必要基于IGBT特性及均压控制的要点,选择更有效的均压方法。 在此首先分析IGBT各阶段均压控制的目标,采用稳压管箝位的峰值控制技术,在低压实验中验证了该均压原理的有效性。然后针对该技术在高压场合应用时的缺点,提出一种新的峰值控制方法,并通过仿真验证了该方法的有效性。 2、IGBT串联均压控制分析 作为IGBT的主要特性,输出特性描述的是以门极电压uGE为参考变量时,集电极电流iC与集射极间电压uCE的关系。输出特性分为4个区域:饱和区、有源区、截止区和击穿区。IGBT的动态开关过程,主要是在截止区和饱和区间来回转换,而在器件的转换过程中经过有源区。 IGBT器件通常有4种工作状态:关断瞬态、关断稳态、开通瞬态、开通稳态。因IGBT不均压情况在关断时比开通时更复杂,在此以关断时的均压控制为主要研究目标。 按外电路和器件内部参数不一致等因素对uCE不均压的影响效果,可将串联IGBT关断不均压过程分为关断瞬间的T1(uCE上升部分)、T2(拖尾部分)和关断稳态(T2以后)三阶段,如图1所示。T1阶段,主要是由外电路和器件内部参数的差异引起串联IGBT的uCE不均压。此时IGBT工作在有源区,可通过调节uGE对uCE进行控制;T2阶段,引起串联IGBT的uCE不均压的主要因素是拖尾电流不同。此时,IGBT进入截止区,uGE对拖尾电流无影响,由拖尾电流引起的uCE不均压不受门极直接控制。关断稳态时,只有很小的漏电流流过IGBT,并联合适的均压电阻即可实现IGBT串联运行。 3、基于峰值控制的均压方法 IGBT均压最直接的目的就是保证串联运行中每个IGBT的uCE都不超过安全极限。所以,对电压峰值进行控制是很重要、有效的技术路线。峰值控制不关心uCE的中间变化轨迹,只有当uCE升至设定的电压水平时,均压控制才开始起作用。当所有串联IGBT的uCE峰值都被箝位在给定值之内,就实现了动态均压的目的。 3.1、稳压管箝位的峰值控制 通过上述对串联IGBT均压阶段特性的分析,综合各阶段均压控制的特点,采用基于稳压管箝位的峰值控制方法实现IGBT串联均压,均压电路如图2a所示。该方法将串联IGBT的关断过程进行优化,在T1阶段,使uCE具有两阶段电压变化率,如图2b所示。第1阶段电压变化率较快,以降低损耗:第2阶段电压变化率下降,以降低电压不均衡度,并为箝位电路赢得更多的响应时间。通过调节转折点和峰值箝位点的值,在IGBT关断过程的损耗与电压均衡度之间做出折中。在T2阶段,由拖尾电流的差异引起不均压,通过峰值箝位电路,向门极注入电流,改变uGE,使IGBT进入有源区,进而控制uCE电压,达到均压控制。在关断稳态时,均压支路还起到均压电阻的作用。 图3为实验电路,三相交流电源经隔离变压器、不控整流器得到0~1kV可调直流电源Udc。Cd1,Cd2为滤波电容,Rd1,Rd2为Cd1,Cd2放电电阻。电路采用两个IGBT串联模块。一个模块做串联开关管V1,V2,另一个模块始终关断。利用其反并联二极管形成续流回路。驱动脉冲频率100Hz,占空比0.01,由TMS320F28335发出,经驱动电路控制IGBT。驱动芯片为M57962L。Z1,Z2为1N5378B,1N5363B串联构成。均压电路参数:Z1为100V,Z2为330V;C=2.2nF;R1=24Ω,R2=1.5kΩ。 图4为无均压电路时串联IGBTuCE波形。可见,在T1阶段,由于关断延时和关断速率不同,造成串联IGBT的uCE不均压。在T2阶段,由于串联IGBT拖尾电流不等,造成串联IGBT不均压。加入均压电路后,如图5b所示,在第1个箝位点实现了uCE波形两阶段的电压变化率控制;在第2个箝位点实现了峰值控制。均压电路对拖尾电流引起的不均压和关断稳态不均压都有显著控制效果。验证了稳压管箝位峰值控制均压原理的有效性。 当串联单个IGBT承受电压较高时,电路中稳压二极管需串联。由于稳压二极管增多导致可靠性降低,其在高压大功率场合的使用受到限制。 |