工程师实战经验:PSR原边反馈开关电源设计的“独特”方法

时间:2022-03-17来源:佚名

目前比较流行的低成本、超小占用空间方案设计基本都是采用PSR原边反馈反激式,通过原边反馈稳压省掉电压反馈环路(TL431和光耦)和较低的EMC辐射省掉Y电容,不仅省成本而且省空间,得到很多电源工程师采用。

下面结合实际来讲讲我对PSR原边反馈开关电源设计的“独特”方法——以实际为基础。

要求条件:

全电压输入,输出5V/1A,符合能源之星2之标准,符合IEC60950和EN55022安规及EMC标准。因充电器为了方便携带,一般都要求小体积,所以针对5W的开关电源充电器一般都采用体积较小的EFD-15和EPC13的变压器,此类变压器按常规计算方式可能会认为CORE太小,做不到,如果现在还有人这样认为,那你就OUT了。

磁芯以确定,下面就分别讲讲采用EFD15和EPC13的变压器设计5V/1A5W的电源变压器。

1.EFD15变压器设计

目前针对小变压器磁芯,特别是小公司基本都无从得知CORE的B/H曲线,因PSR线路对变压器漏感有所要求。

所以从对变压器作最小漏感设计入手:

已知输出电流为1A,5W功率较小,所以铜线的电流密度选8A/mm2,

次级铜线直径为:SQRT(1/8/3.14)*2=0.4mm。

通过测量或查询BOBBIN资料可以得知,EFD15的BOBBIN的幅宽为9.2mm。

因次级采用三重绝缘线,0.4mm的三重绝缘线实际直径为0.6mm。

为了减小漏感把次级线圈设计为1整层,次级杂数为:9.2/0.6mm=15.3Ts,取15Ts。

因IC内部一般内置VDS耐压600~650V的MOS,考虑到漏感尖峰,需留50~100V的应力电压余量,所以反射电压需控制在100V以内,

得:(Vout VF)*n<100,即:n<100/(5 1),n<16.6,

取n=16.5,得初级匝数NP=15*16.5=247.5

取NP=248,代入上式验证,(Vout VF)*(NP/NS)<100,

即(5 1)*(248/15)=99.2<100,成立。

确定NP=248Ts.

假设:初级248Ts在BOBBIN上采用分3层来绕,因多层绕线考虑到出线间隙和次层以上不均匀,需至少留1Ts余量(间隙)。

得:初级铜线可用外径为:9.2/(248/3 1)=0.109mm,对应的实际铜线直径为0.089mm,太小(小于0.1mm不易绕制),不可取。

假设:初级248Ts在BOBBIN上采用分4层来绕,初级铜线可用外径为:9.2/(248/4 1)=0.146mm,对应的铜线直径为0.126mm,实际可用铜线直径取0.12mm。

IC的VCC电压下限一般为10~12V,考虑到至少留3V余量,取VCC电压为15V左右,

得:NV=Vnv/(Vout VF)*NS=15/(5 1)*15=37.5Ts,取38Ts。

因PSR采用NV线圈稳压,所以NV的漏感也需控制,仍然按整层设计,

得:NV线径=9.2/(38 1)=0.235mm,对应的铜线直径为0.215mm,实际可用铜线直径取0.2mm。也可采用0.1mm双线并饶。

到此,各线圈匝数就确定下来了。

绕完屏蔽后,保TAPE1层;

再绕初级,按以上计算的分4层绕制,完成后包TAPE1层;

为减小初次级间的分布电容对EMC的影响,再用0.1mm的线绕一层屏蔽,包TAPE1层;

再绕次级,包TAPE1层;

再绕反馈,包TAPE2层。


可能有人会说:怎么没有计算电感量?因前面说了,CORE的B/H不确定,所以得先从确定饱和AL值下手。

把变压器CORE中柱研磨一点,然后装上以上方式绕好的线圈装机,并用示波器检测Rsenes上的波形,见下图中R5。

输入AC90V/50Hz,慢慢加载,观察CORE有没有饱和,如果有饱和迹象,拆下再研磨……直到负载到1.1~1.2A刚好出现一点饱和迹象。(此波形需把波形放大到满屏观察最佳)

OK,拆下变压器测量电感量,此时所测得的电感量作为最大值依据,再根据厂商制造能力适当留 3%~ 5%的误差范围和余量,如:测量为2mH,则取2-2*0.05=1.9mH,误差为 /-0.1mH。

现在再来验证以上参数变压器BOBBIN的绕线空间。

已知:E1和E2铜线直径为0.1mm,实际外径为0.12mm;

NP铜线直径为0.12mm,实际外径为0.14mm;

NS铜线直径为0.4mm,实际外径为0.6mm;

TAPE采用0.025mm厚的麦拉胶纸。

A.

NV若采用铜线直径为0.2mm,实际外径为0.22mm

线包单边厚度为:E1 TAPE NP TAPE E2 TAPE NS TAPE NV TAPE

=0.12 0.025 0.14*4 0.025 0.12 0.025 0.6 0.025 0.22 0.025*2=1.77mm.

B.

NV若采用铜线直径为0.1mm双线并饶,实际外径为0.12mm

线包单边厚度为:E1 TAPE NP TAPE E2 TAPE NS TAPE NV TAPE

=0.12 0.025 0.14*4 0.025 0.12 0.025 0.6 0.025 0.12 0.025*2=1.67mm.

测量或查EFD15的BOBBIN的单边槽深为2.0mm,所以以上2种方式绕制的变压器都可行。

2.EPC13的变压器设计

依然沿用以上设计方法,测量或查BOBBIN资料可得EPC13BOBBIN幅宽为6.8mm,

次级匝数为:6.8/0.6=11.3Ts,取11Ts.

初级匝数为:11*16.5=181.5Ts,取182Ts.

反馈匝数为:15/(5 1)*11=27.5Ts,取28Ts.

EPC13的绕线方式同EFD15,在这里就不再重复了。


以上变压器设计出的各项差数是以控制漏感为出发点的,各项参数(肖特基的VF,MOS管的电压应力余量……)都是零界或限值,实际设计中会因次级绕线同名端对应输出PIN位出现交叉,或输出飞线套铁氟龙套管,或供应商的制程能力,都会使次级线圈减少1~2圈,对应的初级和反馈也需根据匝比减少圈数;另,目前市场的竞争导致制造商把IC内置MOS管的VDS耐压减小一点来节省成本,为保留更大的电压应力余量,需再减少初级匝数;以上的修改都会对EMC辐射造成负面影响,对应的取舍还需权衡,但前提是必须使产品工作在DCM模式。

从08年市场上推出PSR原边反馈开关电源设计方案到现在我一直都有在用此方案设计产品,回顾看看,市场上也出现了很多不同品牌的PSR方案,但相对以前刚推出的PSR控制IC来说,有因市场反映不良而不断改进的部分,但也有因为恶性竞争而COSTDOWN的部分。主要讲讲COSTDOWN的部分。

因受一些品牌在IC封装工艺上的专利限制,所以目前大部分的内置MOS的IC(不仅是PSR控制IC,也包括PWM控制IC)采用的是在基板上置入控制晶圆和MOS晶圆,之间用金线作跳线连接,这样就有2个问题产品了:

1.金线带来的EMC辐射。

2.研制控制晶圆的公司可以自己控制控制晶圆的成本,但MOS晶圆一般采用的从MOS晶圆生产上购买,这样一来,MOS晶圆的成本控制也成为IC成本控制的案上肉。

辐射可以采用优化设计来控制。

但MOS晶圆的COSTDOWN的路径来源于降低其VDS的耐压,目前已有很多不同品牌的IC将VDS为650V的内置MOS降到620~630V,甚至560~600V。这样一来,只控制漏感降低VDS峰值电压是不够的,所以还需为VDS保留更大的电压应力余量。

下面再以EPC13为实例,讲讲优化设计后的变压器设计。

方法同上,先计算出次级,因考虑到输出飞线套铁氟龙套管或输出线与BOBBINPIN位交叉,所以需预留1匝空间,得:次级匝数为:6.8/0.6-1=10.3,取10Ts.

再计算初级匝数,因考虑到为MOS管留更大的电压应力余量,所以反射电压取之前的75%

得:(Vout VF)*n<100*75%

输出5V/1A,采用2A/40V的肖特基即可,2A/40V的肖特基其VF值一般为0.55V。

代入上式得:n<13.51,

取13.5,得NP=10*13.5=135Ts.

代入上式验证(5 0.55)*(135/10)=74.925<75,成立。

确定NP=135Ts.

下面再计算反馈匝数,

依然取反馈电压为15V,

得,15/(5 0.55)*10=27Ts.

下面来确定绕线顺序。

因要工作在DCM模式,且采用无Y设计,DI/DT比较大,变压器磁芯研磨气隙会产生穿透力强杂散磁通导致线圈测试涡流,影响EMC噪音,所以需先在BOBBIN上采用0.1mm直径的铜线绕满一层作为屏蔽,且引出端接NV的地线。

    相关阅读

    城市亮化工程如何设计才能具有层次感?

    城市亮化工程 的主要目地是为夜间带来一体化照明,考虑基础的视觉识别规定,自然环境照明的光层级与光线总数的多少相关,假如空间中的自然环境照明比工作照明低许多 ,在工作...
    2022-10-11
    城市亮化工程如何设计才能具有层次感?

    城市道路照明工程主要有哪些?

    在城市建设中,道路照明 是必不可少的基础设施,也是城市夜景的重要组成部分。在某种程度上,它还反映了城市的经济实力,社会进步和现代化的标志。它为夜间在城市中的车辆和行...
    2022-07-12
    城市道路照明工程主要有哪些?

    安全出口指示标志灯为什么是绿色而不是红色?

    对于安全出口指示标志灯相信大家都不陌生,我们在日常生活中在任何公众场所的紧急疏散的安全出口都可以看到这个安全出口指示标志灯,大家有没有想过安全出口的指示标志为什么...
    2022-05-21
    安全出口指示标志灯为什么是绿色而不是红色?

    路灯照明合理的布置方式

    路灯的布置方式主要有单侧布置、双侧交错布置、双侧对称布置、中心对称布置、横向悬索布置五种形式,随着城市道路的不断拓宽,平交路口转弯半径越来越大,根据《城市道路亮化...
    2022-07-15

    泛光照明工程是什么?应用范围有哪些?

    很多人提及 泛光照明工程 会有一些生疏,不理解泛光照明包含哪些,也不知道 泛光照明工程 跟普通照明工程有哪些不一样。 实际上泛光照明工程便是归属于城市景观照明工程或环境...
    2022-10-17
    泛光照明工程是什么?应用范围有哪些?

    消防应急灯的寿命有多长?一般可以使用多长时间?

    对于消防应急灯的使用寿命相信很多人都想了解这个问题,因为消防应急灯安装了就不需要时时刻刻盯着,这需要定时检查就可以了,但是很多人都不知道消防应急灯的寿命有多长,不...
    2022-05-21
    消防应急灯的寿命有多长?一般可以使用多长时间?

    快投派智能无线投屏器,让无线互联更加简单便捷

    没有WiFi的情况下可以进行无线投屏吗? 长期使用投屏功能的人,或多或少都知道自己的手机可以通过【无线投屏】【屏幕镜像】功能,直接连接到智能电视或无线投屏器,下意识地认...
    2022-05-11
    快投派智能无线投屏器,让无线互联更加简单便捷

    广场照明的设计技巧

    广场照明设计 主要包括休闲广场、集会活动广场、商业广场的照明设计。 1)休闲广场。主要是为人们提供休息、社交和举行小型文化娱乐活动的地方,由于人们活动方式不同,有些区...
    2022-07-15

    网站栏目