1 引言
近年来,LLC谐振变换器由于具有拓扑结构简单,可以在全负载范围内实现开关管的ZVS和部分负载范围内的副边整流二极管ZCS等优点,被广泛应用于LCD电源、LED电源和离线式电源等场合。虽然LLC谐振变换器有如此多的优点,它仍然存在一些问题。谐振腔的谐振参数设计较难,而且调频控制较为复杂。在轻载或空载时,输出电压不稳定。谐振元件和变压器作为LLC谐振变换器中的关键部件,其设计参数和分布参数对整机性能有着重要的影响。
本文首先采用FHA(基波近似法)对LLC谐振变换器进行电路分析[1],通过Mathcad软件画出电压增益曲线族。其次,分析变压器分布电容对LLC空载和轻载时带来的影响。同时,对高频变压器的不同绕法以及绕组布局对分布电容的影响进行了研究。最后,通过saber软件对变压器建模仿真,验证分析的正确性。
2 谐振参数和空载电压增益分析
半桥LLC谐振变换器,如图1(a)所示,由直流输入、开关网络、谐振网络、理想变压器、整流电路、低通滤波电路和负载七部份组成。为了使变换器有效地传递能量和调整输出电压,首先推导出电压传递函数。LLC谐振变换器通常工作于谐振频率附近以获得最高的转换效率,这意味着谐振电流主要以单一频率电流分量构成,可近似为一正弦波。因此,本文采用基波近似法来进行等效建模。
传统的FHA认为变压器是理想的,没有考虑寄生参数对变换器的影响。通过FHA分析,LLC谐振变换器的等效电路图如图1(b)所示。
由电路知识,从图1(b)推导出LLC电路的传递函数,然后对传递函数进行归一化处理,电压增益的表达式为:
(1)
其中,,,。
通过Mathcad软件,k取不同值时的电压增益曲线图如图2所示。
因此,当k值固定时,且当Q值减小即负载降低时,增益曲线整体变高,最高增益点增大,转折频率fc向左移动逐渐远离谐振频率fr(由谐振电感Lr和谐振电容Cr谐振所得)。当Q值固定时,且当k值增大时,增益曲线整体变缓,为了得到相同的电压增益,其工作频率变宽。这有利于宽范围输入,但是对磁元件的工作是不利的[2]。k越小,Lm也越小,则激磁电流峰值越大,损耗也越大,尤其在空载条件下。考虑宽范围输入电压,根据工程经验,选取k在8~11之间。
由于磁芯和线圈都不是理想的,实际变压器中存在着许多寄生参数,在对变压器建模时,应考虑寄生参数的影响。文献[3]中详细分析了LLC谐振变换器在空载时增益失真的原因。为了解决LLC在空载下的增益失真问题,应该要考虑变压器分布电容以及整流二极管的结电容,如图3(a)所示,图中将分布电容加粗示意。文献[3]中提出一种针对二极管结电容问题的解决方案。本文就变压器分布电容对LLC谐振变换器空载特性的影响做出分析。
如图3(a)所示,Cj为整流二极管的结电容;Cp和Cs分别为变压器初级绕组和次级绕组各自的分布电容,分别代表了变压器初级和次级各自内部存储的电场能量;而Cps为初级与次级之间的分布电容,反映了变压器原副边之间的电场耦合能力[4]。为了消除变压器初级和次级电容耦合产生电磁干扰,通常,在初级和次级设有屏蔽层,因此,其影响可以忽略。忽略铜耗和铁耗,再次对LLC谐振变换器进行FHA分析,其等效电路如图3(b)所示。从变压器次级侧反射到初级侧的等效分布电容参数Ceq可近似为:
(2)
(3)
其中,。
再次通过Mathcad软件,以k取5为例,画出不同Ceq时的空载增益曲线如图4所示。从图4易得,随着分布电容的增大,LLC在空载下的增益曲线失真现象越为严重。
|