基于LM3445可控硅调光器的离线式LED驱动器

时间:2022-03-17来源:佚名

最近美国国家半导体(NS)公司推出一种带有TRIAC调光译码器的离线式AC/DC降压(buck)恒流LED控制器LM3445,允许利用标准TRIAC调光器对LED进行宽范围的平稳无闪烁调光,打破了传统 TRIAC调光器应用与LED节能照明的一个瓶颈。

LM3445的主要特点

LM3445与先前的同类离线式AC/DC降压恒流LED驱动器IC比较,其主要特点是在芯片上设计了TRIAC调光译码器电路,能传感AC线路 TRIAC调光波形,并将其转换成控制LED电流的调光信号,几乎能在从0%到100%的调光范围内实现无闪烁LED亮度调控。LM3445的其它特征主要有:

(1)AC输入电压范围为80~270V,适用于国际通用AC线路;

(2)能够控制大于1A的LED电流;

(3)适合配置无源(被动式)功率因数校正(PFC)电路,满足能源之星固态照明(SSL)商业应用要求;

(4)支持主/从控制功能的多芯片解决方案,使用一个TRIAC调光器和一个主LM3445,便能控制多个基于LM3445的从属降压变换器驱动的多串LED;

(5)提供VCC欠锁定、门限是165℃的热关闭保护和电流限制;

(6)固定关断时间可编程,开关频率可调节;

(7)采用10引脚MSOP封装,结温范围为一40℃~ 125℃。

基于LM3445的TRIAC调光离线LED驱动电路

基本电路

LM3445的内部结构及由其组成的TRIAC调光离线式LED驱动电路如图l所示。这种AC—DC恒流LED驱动电路主要含有五个部分,即 TRIAC调光器、桥式整流器BR1、整流线路电压检测及调光译码器电路、无源功率因数校正(PFC)电路和降压(buck)式DC/DC变换器电路,整个系统的核心是LM3445。

基于LM3445可控硅调光器的离线式LED驱动器

2013-12-30 13:31 文章来源: 电源网 有46人阅读过 电路工作原理

(1)TRIAC调光器

在图1中,串联在桥式整流器BR1输入端的TRIAC调光器采用传统基于相位控制的电路,如图2所示。R1、R2和C1值决定C1上电压达到双向触发二极管(DIAC)触发电压(约32V)之前的延迟时间。对于负载是白炽灯时,R1值减小,TRIAC的导通延迟缩短,导通角增加,灯亮度则增强;反之,若R1值增加,TRIAC导通角将减小,灯光则变暗。

在图1中,TRIAC调光器被串接在AC线路输入端,通过LM3445的调光译码器电路,可以控制LED串的电流,实现亮度调控。

(2)TRIAC调光译码电路

TRIAC调光译码电路由整流线路电压感测电路、TRIAC导通角检测电路和调光译码器电路三部分组成(见图1)。

①线路电压感测

位于桥式整流器之后的R1、15V的齐纳二极管VD1和VT1组成一个串联通路整流器,将整流的线路电压转换为一个适当的电平被 IC(LM3445)的引脚BLDR感测。由于VT1源极未连接电容器,当线路电压降至15V以下时,允许IC引脚BLDR上的电压随整流电压升高和降低。R5的作用有两个:一是用作泄放IC引脚BLDR节点寄生电容的电荷;二是在小电流输出上操作时,为调光器提供所需要的保持电流。

二极管(肖特基型)VD2和电容C5的作用是,当IC引脚BLDR上的电压变低时,维持IC引脚VCC上的电压,使IC能够正常操作。

②角度检测和调光译码器

TRIAC导通角检测电路利用一个门限为7.2V的比较器监视IC引脚BLDR来确定TRIAC是导通或者关断。比较器输出经4μs的延迟线控制一个泄放电路并驱动一个缓冲器。缓冲器输出(引脚ASNS)摆幅被限制在0~4V,经R1和C3组成的低通滤波器滤波,通过IC引脚FLTRl输入到斜坡比较器(反相端),与斜坡产生器产生的5.88kHz、l~3V的锯齿波相比较,斜坡比较器输出驱动引脚DIM和一个N沟道MOSFET。MOSFET漏极上的信号经内部370kΩ和IC引脚FLTR2上的电容C4组成的(第二个)低通滤波器滤波,输至内部PWM比较器。调光译码器输出一个幅度从 0~750mV变化的DC电压,相应的调光器占空比是从25%到75%变化,TRIAC导通角范围从45℃到135℃,从而直接控制LED的峰值电流,获得几乎从0%到100%的调光范围。

(3)无源PFC电路

电容C7和C9以及二极管VD4、VD8、VD9组成部分滤波填谷式无源(即被动式)PFC电路。用其替代一个传统大容量滤波电容器,可以改善线路功率因数。电容C10(10nF)在C7和C9充电时,可以衰减电压纹波。无源PFC电路输出电压Ubuck,作为降压变换器的DC总线电压。

在没有TRIAC调光器接入的情况下,当AC线路电压高于其峰值的1/2时,VD3和VD8导通,VD4和VD9截止,电容C7和C9以串联方式被充电,并且电流会流入负载。当AC线路电压低于其峰值的l/2时,VD3和VD8反向偏置,而VD4和VD9正向偏置,C7和C9以并联方式放电,电流流入负载。图3所示为不带TRIAC调光器时AC线路电压UAC、整流电压UBR1和PFC电路输出电压Ubuck波形。由图3可知,虽然Ubuck波形很不平滑,但在AC线路半周期内的电流导通角达120°(即从30°到150°),线路功率因数达0.9以上。而只用单个大容量电容滤波虽然能获得比较平滑的DC电压,但电流流动角仅约60°(即从60°到120°),线路功率因数不超过0.6。

加入TRIAC调光器时的相关电压波形如图4所示,其中θ为TRIAC的导通角。

(4)DC—DC降压变换器

控制器LM3445、功率MOSFET(VT2)、电感器L2、二极管VD10、电阻R3和电容C12等,组成开关型DC—DC降压变换器,用来驱动LED串。

当LM3445引脚GATE上的PWM信号驱动VT2导通时,通过L2和LED串的电流线性增加,并被R3感测。当R3上的电压等于在IC引脚 FLTR2上的参考电压时,VT2则关断,L2释放储能,VD10导通,电流通过LED串和L2,并从其峰值线性减小。C12用作消除大部分电感L2的纹波电流,R4、C11和VT3为设置固定关断时间提供一个线性电流斜坡信号。

主要参数与元件值的计算

LM3445可以在80~270VAC的通用AC线路上工作,现设输入电压范围是90~135VAC,开关频率fsw=250kHz,变换器效率 η≥80%,LED正向压降UF=3.6V,通过LED串的平均电流ILED=400mA,串联LED的数量n=7,LED串的总电压降则为 ULED=nUF=7×3.6V=25.2V。因篇幅所限,在此我们仅重点介绍无源PFC电路和降压变换器中主要元件的选择。

1)填谷式无源PFC电路元件的选择

在没有TRIAC调光时,填谷式电路电压Ubuck波形如图5所示。对于60Hz的线路频率,半周期时间是8.33ms。AC电压在30°和 150°上的值为峰值的1/2,保持时间tx为半周期的1/3,即8.33ms×(1/3)=2.78ms。在90VAC的低线路电压上,Ubuck最小值为

C7和C9的额定电压选择200V是允许的。二极管VD4、VD8和VD9可选用200V、1A的RF07lM2S或等同器件。

VD3选用与VD4、VD8、VD9相同的二极管,C10选用10nF/250V的薄膜电容器。

2)降压式变换器元件选择

有些元件值的计算都与变换器关断时间tOFF有关。降压变换器在理想情况下的占空因数可表示为:

通过R4的电流ICOLL在50μA与100μA之间,选择ICOLL=70μA,R4=ULED/ICOLL=25.2V/70μA=360kΩ。R4选用365kΩ的标准电阻。

根据公式i=C(dU/dt),通过R4和 C11的电流为ULEd/R4,电流进入到C11产生一个线性充电特性,IC引脚COFF内部比较器(见图1)门限为1.276V,因此C11= (ULED/R4)(tOFF/1.276V)=(25.2V/365kΩ)(3μs/1.276V)=162pFC11选用120PF的标准电容值。

电感器L2纹波电流△iL2按电感平均电流的30%来选取,△iL2则为ILED×30%=400mA。在关断期间,L2上的电压△UL2=ULED,△t=tOFF,根据公式△UL2=L2(△iL2/△t)得:

L2=(ULED×tOFF)/△iL2=(25.2V×3μs)/120mA=630μH

在非调光情况下和连续导电模式,iL2的峰值电流为

iL2(PK)=IAVE △iL2/2=ILED 120mA/2=460mA

当电感电流达到峰值时,IC内控制MOSFET关断,此时R3上的峰值感测电压是750mV。因此,R3值为:

R3=750mA/iL2(PK)=750mV/460mA=1.63Ω

选择R3=1.8Ω。

C12选择lμFl50V的电容,VD10选择50V、1A的二极管。

在图1中,其他元件选择如下:

BRl选用400V、0.8A的HD04- T,VD1选用15V的DZX84C15LT1G,VD2选用40V、120mA的BAS40H,VT1和VT2选用400V、4A的 FQD7N30TF,VT3选用100V、170mA的PNP晶体管,R2=100kΩ,R5=1kΩ,C5=22μF/50V,C3=470nF/16V,C4=100nF/16V。

结束语

LM3445是含有TRIAC调光译码器的固定关断时间AC/DC降压恒流LED驱动器。基于LM3445的离线式LED照明电源,利用传统白炽灯TRIAC调光器,能够对LED串进行宽范围平稳无闪烁调光,实现100:1的调光比,从而解决了标准TRIAC调光器应用于LED调光的瓶颈。


    相关阅读

    城市亮化工程如何设计才能具有层次感?

    城市亮化工程 的主要目地是为夜间带来一体化照明,考虑基础的视觉识别规定,自然环境照明的光层级与光线总数的多少相关,假如空间中的自然环境照明比工作照明低许多 ,在工作...
    2022-10-11
    城市亮化工程如何设计才能具有层次感?

    城市道路照明工程主要有哪些?

    在城市建设中,道路照明 是必不可少的基础设施,也是城市夜景的重要组成部分。在某种程度上,它还反映了城市的经济实力,社会进步和现代化的标志。它为夜间在城市中的车辆和行...
    2022-07-12
    城市道路照明工程主要有哪些?

    安全出口指示标志灯为什么是绿色而不是红色?

    对于安全出口指示标志灯相信大家都不陌生,我们在日常生活中在任何公众场所的紧急疏散的安全出口都可以看到这个安全出口指示标志灯,大家有没有想过安全出口的指示标志为什么...
    2022-05-21
    安全出口指示标志灯为什么是绿色而不是红色?

    路灯照明合理的布置方式

    路灯的布置方式主要有单侧布置、双侧交错布置、双侧对称布置、中心对称布置、横向悬索布置五种形式,随着城市道路的不断拓宽,平交路口转弯半径越来越大,根据《城市道路亮化...
    2022-07-15

    泛光照明工程是什么?应用范围有哪些?

    很多人提及 泛光照明工程 会有一些生疏,不理解泛光照明包含哪些,也不知道 泛光照明工程 跟普通照明工程有哪些不一样。 实际上泛光照明工程便是归属于城市景观照明工程或环境...
    2022-10-17
    泛光照明工程是什么?应用范围有哪些?

    消防应急灯的寿命有多长?一般可以使用多长时间?

    对于消防应急灯的使用寿命相信很多人都想了解这个问题,因为消防应急灯安装了就不需要时时刻刻盯着,这需要定时检查就可以了,但是很多人都不知道消防应急灯的寿命有多长,不...
    2022-05-21
    消防应急灯的寿命有多长?一般可以使用多长时间?

    快投派智能无线投屏器,让无线互联更加简单便捷

    没有WiFi的情况下可以进行无线投屏吗? 长期使用投屏功能的人,或多或少都知道自己的手机可以通过【无线投屏】【屏幕镜像】功能,直接连接到智能电视或无线投屏器,下意识地认...
    2022-05-11
    快投派智能无线投屏器,让无线互联更加简单便捷

    广场照明的设计技巧

    广场照明设计 主要包括休闲广场、集会活动广场、商业广场的照明设计。 1)休闲广场。主要是为人们提供休息、社交和举行小型文化娱乐活动的地方,由于人们活动方式不同,有些区...
    2022-07-15

    网站栏目