白炽灯节能灯和LED灯毒性对比

时间:2021-05-23来源:佚名

为了履行《美国能源独立和安全法案》和《欧盟生态化设计指令》,人工照明系统从白炽灯过渡到节能灯(CFL)和LED,这是为了节省能源和减少温室气体排放。

同传统的白炽灯泡相比,节能灯(CFL)与发光二极管(LED)等新型灯泡可节省70~85%的能源消耗,使用寿命也大大增加,因而被认为是一种具有巨大节能潜力的技术,然而,这些新型灯泡比传统灯泡的设计要复杂得多,具有潜在的环境不利影响,甚至与消费类电子设备相当。CFL和LED组件中含更多的金属。这些组件有不确定性的潜在环境影响,当到达其工作寿命需要废弃时,是否需要作出特别的规定呢?

Seong-RinLim等在本月出版的“环境科学与技术”(Environ.Sci.Technol.)上发表了一篇文章“LED的潜在环境影响:是金属资源,还是有毒的危险废弃物”。他们综合三种类型灯泡(普通白炽灯、LED和节能灯)在许多方面的情况进行了环境与资源方面的评价。

节能灯要消耗更多的锑、铜(主要是用于线圈和印刷线路板)、铁、铅(印刷线路板和焊料)、汞(螺旋式节能灯)、磷、钇(荧光)和锌(防护性涂层钢)。LED灯泡需要更多的铝(散热片)、锑(LED芯片)、钡、铬(不锈钢)、铜(线圈)、镓(LED芯片)、金(LED线)、铁、铅(印刷线路板)、磷、银(反光涂层)和锌(保护层)。白炽灯泡只有钨(灯丝)和镍。

因此,回收利用节能灯和LED灯中的金属是非常有必要的。对节能灯和LED灯泡的废弃物管理政策应包括制造商对废弃灯泡的回收系统或“抵押返还”(deposit-refund)制度。此外,在产品上标示其潜在的危险性,让其放入正确的垃圾分类和回收系统中,避免将其丢到常规的生活垃圾中。

环境设计项目(DesignfortheEnvironmentProgram,DfE)是美国环保署1992年开发的一个项目,致力于防止污染以及给人类和环境带来的污染风险。DfE要求在设计过程中考虑产品生命周期内的环境质量问题,从材料管理一直贯穿到回收和再利用减少对环境的影响。废弃物毒性特性溶出程序(TCLP)是美国环保局的一种测试方法,旨在模拟垃圾填埋场中通过水溶出而进入地下水的过程。

经过上述测试发现,由于LED灯泡需要金、银、锑、铜,所以在资源消耗上比白炽灯高2个数量级,比节能灯高2-5倍高。对节能灯来说,在资源消耗上有重要影响的物质是铜。银和金是稀贵金属,在欧盟锑也列为存在资源危机的材料。虽然在美国铜还没有达到危机的程度,但在节能灯和LED中,铜的用量非常高,是其他金属材料的1-6个数量级,发展下去也令人担忧。LED灯泡中金属含量最多的是铝、钡、铬、镓,它们并会不明显导致总资源的消耗。这里需要注意的是,在考虑供应风险上,虽然镓在全球的储量估计相当大,但仍被认为是一种可能面临危机的材料,因为镓只是作为处理铝土矿和锌矿石的副产品而获取。相反,钇、钆和铈虽然也属于稀土元素,但不太会成为危机材,因为钇、铈在全球还算储量丰富,钆的用量非常少。

如果LED和节能灯以目前的速度持续地取代白炽灯泡,就会产生相当大的资源消耗,因为金、银、锑、铜的资源供应是不足的。由于金具有低电热阻抗,主要用于连接LED芯片中电极的导线。银作为LED中优良的反光涂层材料。锑是LED芯片的核心材料。铜是用于LED和节能灯中的线圈为和印刷电路板。因此,在DfE中,这些辅助的组件(非发光技术本身)是有希望进行改造和革新的,以减少其金属含量,正如在信息和通信产业,光纤电缆取代铜电缆一样。附加的例子在实际产品的成功的DfE可以发现在美国EPADfE网站。除了改造组件技术,回收技术和管理策略也应该跟进,确保在LED和节能灯中回收的贵重金属能进入再循环。

在现有的美国联邦与加州州政府的法规中,通过应用基于生命周期影响和基于危害的评价方法,评估这些灯泡产品是否可归为危险废弃物。基于生命周期影响的方法,与常规的生命周期评估(LCA)是不同的,它是要量化LCA中元素的毒性潜力。节能灯和LED灯都可归为危险废弃物,因为可流失的铅已经极度过量了(分别为132mg/L与44mg/L,而安全标准规定为5)和高含量的铜(111000mg/kg和31600mg/kg,而安全标准规定为2500)、铅(CFL灯泡为3860mg/kg,安全标准规定为1000)和锌(CFL灯泡为34500mg/kg,安全标准规定为5000),而白炽灯泡是不危险的。注意,CFL灯泡的结果中,没有考虑灯泡汞蒸气,实验样品制备过程中没有进行捕获)。与白炽灯相比,节能灯和LED灯具有较高的导致资源枯竭和毒性的潜力,主要是由于它们具有较高的铝、铜、金、铅、银和锌。

LED具有最高的毒性潜力,主要是由于含铜和铝,节能灯次之,因为主要金属是铜。这些结果与潜在毒性指标(ToxicPotentialIndicator,TPI)的结果有所不同。TPI的结果表明,节能灯具有最高的毒性可能主要是由于其中含锌和铜,其次才是含铜的LED。白炽灯泡含铝、铜、镍,但量很低,毒性潜力小。节能灯的具有最高的人类毒性和生态毒性潜力,LED次之。节能灯的人类毒性和生态毒性分别比LED高2.5倍和1.3倍,是白炽灯的2个数量级。考察灯泡中各金属元素对人类毒性和生态毒性的相对贡献,锌和铜是最高的,分别占89、98%和74-89%。

综合来说,节能灯和LED灯的环境潜在影响分别高于白炽灯3-26倍和2-3倍。目前的节能灯和LED灯泡技术需要进一步发展,降低整体资源消耗和毒性潜力。权衡收益与成本的综合评估认为,从DfE生命周期角度证明寻找替代材料是很有必要,尽量减少铝、铜、金、铅、银、锌的使用。另一种方法是开发寿命更长的节能灯和LED灯泡,可减少新的资源的使用和废弃物数量。因此,在照明产品开发中,要遵循保护和可持续发展政策,除了提高能源利用效率,还应该重点开发一些在不影响他们的性能和寿命的前提下,减少危险和稀有金属含量的技术。而从资源回收角度来讲,灯泡中的一些金属其实又是非常有限的。因此,迫切需要适当的废弃物管理措施,或者通过革新技术减少毒性物质、金属的含量,或者延长灯泡寿命。

    相关阅读

    中国台湾研究员:开发了新的近红外发射FAPbI3量子点,实现15.4%的钙钛矿基NIR

    近年来,钙钛矿型量子点(QDs)和基于量子点的发光二极管(QLEDs)的性能有了很大的提高,绿色和红色发光的电致发光(EL)效率超过20%。然而,钙钛矿近红外(NIR)QLED的发展已经停...
    2022-07-25
    中国台湾研究员:开发了新的近红外发射FAPbI3量子点,实现15.4%的钙钛矿基NIR

    合肥工大蒋阳课题组在量子点电致发光器件(QLED)领域取得新进展

    近日,合肥工业大学材料科学与工程学院蒋阳教授课题组在钙钛矿量子点电致发光器件(QLED)领域取得了记录效率的突破,相关研究成果“Enriched-bromine surface state for stable sky-blue spectr...
    2022-08-23
    合肥工大蒋阳课题组在量子点电致发光器件(QLED)领域取得新进展

    至芯半导体成功研制日盲深紫外器件

    至芯半导体成功研发出AlGaN的高灵敏日盲型深紫外光的光电探测器,相关成果已申请发明专利(申请号: 202210045910.6),这一成果为实现高性能日盲深紫外光电探测器和图像传感提供了一...
    2022-08-23
    至芯半导体成功研制日盲深紫外器件

    加拿大研究人员:宽禁带钙钛矿量子点及在天蓝LED的应用

    钙钛矿基质在量子点(QD)上的外延生长使高效红光发光二极管(LED)得以出现,因为它将高效电荷传输与强大的表面钝化结合起来。然而,到目前为止,在天蓝LED的情况下,在基质异质...
    2022-07-05
    加拿大研究人员:宽禁带钙钛矿量子点及在天蓝LED的应用

    南方科技大学孙小卫教授课题组AOM:溴离子钝化高效蓝光InP量子点材料与器件研

    半导体照明网获悉:近日,南方科技大学孙小卫课题组通过低温成核、高温包覆的方法成功制备了基于溴离子钝化的高效蓝光InP量子点材料,同时通过配体工程,将长链的十二硫醇配体...
    2022-06-15
    南方科技大学孙小卫教授课题组AOM:溴离子钝化高效蓝光InP量子点材料与器件研

    浙大金一政团队和华南理工大学黄飞/应磊团队合作在量子点发光二极管研究方

    近日,浙江大学金一政课题组、王林军课题组与华南理工大学黄飞 / 应磊团队合作,在高性能蓝、绿光量子点发光二极管( QLED )的开发上取得进展。研究者揭示了无机量子点 / 有机高...
    2022-05-23
    浙大金一政团队和华南理工大学黄飞/应磊团队合作在量子点发光二极管研究方

    厦大张荣教授团队与台交大郭浩中教授团队合作:Micro LED色转换研究领新进展

    随着人工智能、图像识别和5G通信技术的快速发展,增强现实(AR)和虚拟现实(VR)技术正以惊人的速度发展。新冠疫情背景下,远程办公和远程消费交互日益增加,市场再次将注意力转向...
    2022-07-27
    厦大张荣教授团队与台交大郭浩中教授团队合作:Micro LED色转换研究领新进展

    福州大学和中科院宁波材料所专家:为实现高性能超高分辨率QLEDs提供一条途径

    随着对更高像素的需求不断增长,下一代显示器对分辨率和色域有着挑战性的要求。为了满足这一需求,量子点发光二极管(QLEDs)薄膜技术实现了每英寸9072–25400像素的超高像素分辨率...
    2022-07-06
    福州大学和中科院宁波材料所专家:为实现高性能超高分辨率QLEDs提供一条途径

    网站栏目