LED蓝宝石衬底研磨三部曲

时间:2021-05-23来源:佚名

  LED芯片研磨制程的首要动作即“上腊”,这与硅芯片的CMP化学研磨的贴胶意义相同。将芯片固定在铁制(Lapping制程)或陶瓷(Grounding制程)圆盘上。先将固态蜡均匀的涂抹在加热约90~110℃的圆盘上,再将芯片正面置放贴附于圆盘,经过加压、冷却后,芯片则确实固定于盘面,完成上腊的动作。

  一、研磨首部曲——上蜡

  上腊的制程,必须控制腊的厚度在2~3um,这与固蜡的选择、加压方式及条件都有直接影响,并且直接关系着研磨后的完工厚度均匀性。而上腊机的加压、冷却机构部分,大致可分成两种,一为使用两圆盘直接加压方式,另一种则是除了加压圆盘外,还增加了一个真空舱,在加压时将舱体抽真空,增加将蜡均匀压平的效果。

  这两种方式,严格来说差异并不大。但是某些芯片,却不适用于真空加压的方式上腊,例如芯片若是在磊晶制程前就已经在芯片正面的平边作刻号,当加压抽真空时,因为平边的刻号隆起,会造成芯片下的腊被真空吸出,导致腊厚不足。研磨时,平边区域非常容易就被磨掉。除了造成研磨缺角,也因裂痕的产生,容易使芯片破裂。

  然而,加压、冷却的设计也有不同,一般下圆盘都会有冷却水管路盘绕在盘内。但是有的是加压后数十秒或两分钟才开始加冷却水作冷却,而有的则是边加压、边冷却。

  当上腊作业时,有一个难题,即芯片上腊时的气泡。气泡会使芯片无法完全贴附于铁盘或陶瓷盘上,研磨后会造成小裂痕。(若芯片研磨后产生小十字型或人字型裂痕,则是上腊时有微尘未被清除而造成。)但是,近来已经有自动上腊机,如WEC、TECDIA。在Robot取片时,就能将气泡大小控制在0.5mm以下,在经过加压冷却后,芯片上腊的状况就十分良好。但是若以SpeedFAM的手动上腊机进行上腊时,去除腊中1mm大小的气泡,就必须依靠操作者的经验与方法,才能获得最佳的上腊效果。

  二、LED芯片研磨二部曲——研磨

  在上腊制程作业完成后,接下来的制程就是破坏力最高的“研磨制程”。

  过去最成熟的研磨制程就是Lapping,即是将芯片使用氧化铝研磨粉作第一次研磨。其作业方式是使用千分表量测与设定铁盘外围的钻石点,再将其放置于磨盘上,使用研磨粉作研磨。使用钻石点的目的在于让芯片研磨至设定厚度时,由于钻石的硬度最高,所以芯片就不致于再被磨耗。

  但是,由于蓝光LED基板为蓝宝石,硬度高,所以使用Lapping的方式研磨时,会导致制程时间过长。因此,近几年来以Grinding的方式进行蓝光LED的芯片研磨,降低制程工时。

  Grinding制程设备可分成卧式与立式两种,卧式研磨机所指的是研磨马达与水平面平行,可适用于八片式以下的研磨设计。但是若为12片式研磨时,因陶瓷盘过大,则无法使用此设计方式。立式研磨机所指的是研磨马达与水平面垂直,而八片式以上的研磨机以此设计为主。

  在Grinding的制程方式中,使用钻石砂轮搭配冷却液(冷却油 RO水或DI水)或钻石切削液来研磨芯片。虽然冷却方式会依原设计者的制程理念与经验而有所不同,但是并不影响制程的结果。此制程作业之中,最主要的在于工作轴与砂轮轴的调整必须呈平行。再来,就是砂轮的磨石结构。

  由于Grinding研磨制程的速度效率高,若可以在研磨时将芯片厚度尽可能的减薄,则抛光的工时与成本就能降低。但是,研磨是高破坏性的制程作业,所以芯片减薄有一个极限值;另外,研磨制程中因钻石所造成的刮痕约为15um,所以完工厚度值也影响着研磨减薄的厚度设定。

  然而,在使用过的Grinding研磨机里,不论是T牌、W牌、SF牌等,最大的极限值都在95~105um。因为蓝宝石基板的硬度与翘曲,而使得完工后在100um以下的结果相当不稳定。

  所以,LED的研磨制程主要在设备设计与使用者经验的搭配。但是芯片的本质,仍是影响结果的主因。

  三、LED芯片研磨三部曲——抛光

  在芯片研磨之后,接下来的制程作业就是“抛光”。目的在处理Lapping研磨后产生的深孔,或Grinding研磨后的深刮痕。一般而言,Lapping研磨后的孔洞深度约为10um,Grinding研磨后的刮痕深度为15um~20um。

  以Lapping研磨后的抛光制程而言,抛光盘多数使用聚氨酯Pad,即一般所谓的软抛。软抛可以使制程作业后的表面光亮如镜,但是其切削速率极低,约为0.2um/min。另一个抛光方式是使用锡、铅盘,因其盘面为金属材质,所以一般称为硬抛。硬抛的切削速率可以达到0.7~1um/min,加工速度比软抛快。然而,使用金属盘做抛光的风险较高。虽然为锡、铅为软质金属,但是盘面的状况必须十分小心的作监控,尤其是盘面的修整。若在修整后,有金属颗粒未除净,抛光后易碎。

  因此,为了增加切削速率与盘面的稳定性,近年来有了新式的抛光盘,其盘面是树酯,基座是铜。就是现在所谓的“树酯铜盘”。因为盘面材质的硬度介于聚氨酯与锡之间,也被称作是硬抛的一种方式。使用树酯铜盘做抛光,再搭配特制钻石抛光液与每秒的喷洒量,切削率可达2.3~2.8um/min。搭配Grinding的研磨制程,就能增加大量的生产产出。当然,钻石抛光液的消耗量也会随之增加,但是在产能提升与损失风险较低的生产型态之下,每片芯片的生产成本未必会有增加。

  四、探讨树酯铜盘的高切削率搭配

  第一要素是铜盘沟槽与沟槽之间的间隙,沟槽与沟槽之间的间隙宽度最好为沟槽宽度的1.3~1.5倍。再来是抛光液的喷出量,必须依据无尘室环境与铜盘冷却温度而去作适当的设定、调整。

  钻石抛光液大多使用多晶钻石颗粒,不仅切削稳定,若与其他溶剂的配方比例佳,切削速率并不逊色。

  对比W牌与T牌的抛光机,以T牌的设计自动化最佳,但是W牌的设计补救能力最强。所以,在使用考虑上,选择W牌,避免研磨或抛光发生厚度不均匀的异常时,还能对大量的异常施以补救。

  目前,使用W牌的一台上蜡、两台研磨、一台抛光的五片机系列,加上个人的特殊制程改善,最高纪录可以在15小时产出300片。若以四班二轮作平均计算,一天一个班(12小时)可以产出250片左右。

  所以,在适当的设备搭配与使用经验作改善之下,其实抛光是芯片减薄里,最稳定的制造生产。

    相关阅读

    中国台湾研究员:开发了新的近红外发射FAPbI3量子点,实现15.4%的钙钛矿基NIR

    近年来,钙钛矿型量子点(QDs)和基于量子点的发光二极管(QLEDs)的性能有了很大的提高,绿色和红色发光的电致发光(EL)效率超过20%。然而,钙钛矿近红外(NIR)QLED的发展已经停...
    2022-07-25
    中国台湾研究员:开发了新的近红外发射FAPbI3量子点,实现15.4%的钙钛矿基NIR

    合肥工大蒋阳课题组在量子点电致发光器件(QLED)领域取得新进展

    近日,合肥工业大学材料科学与工程学院蒋阳教授课题组在钙钛矿量子点电致发光器件(QLED)领域取得了记录效率的突破,相关研究成果“Enriched-bromine surface state for stable sky-blue spectr...
    2022-08-23
    合肥工大蒋阳课题组在量子点电致发光器件(QLED)领域取得新进展

    至芯半导体成功研制日盲深紫外器件

    至芯半导体成功研发出AlGaN的高灵敏日盲型深紫外光的光电探测器,相关成果已申请发明专利(申请号: 202210045910.6),这一成果为实现高性能日盲深紫外光电探测器和图像传感提供了一...
    2022-08-23
    至芯半导体成功研制日盲深紫外器件

    加拿大研究人员:宽禁带钙钛矿量子点及在天蓝LED的应用

    钙钛矿基质在量子点(QD)上的外延生长使高效红光发光二极管(LED)得以出现,因为它将高效电荷传输与强大的表面钝化结合起来。然而,到目前为止,在天蓝LED的情况下,在基质异质...
    2022-07-05
    加拿大研究人员:宽禁带钙钛矿量子点及在天蓝LED的应用

    南方科技大学孙小卫教授课题组AOM:溴离子钝化高效蓝光InP量子点材料与器件研

    半导体照明网获悉:近日,南方科技大学孙小卫课题组通过低温成核、高温包覆的方法成功制备了基于溴离子钝化的高效蓝光InP量子点材料,同时通过配体工程,将长链的十二硫醇配体...
    2022-06-15
    南方科技大学孙小卫教授课题组AOM:溴离子钝化高效蓝光InP量子点材料与器件研

    浙大金一政团队和华南理工大学黄飞/应磊团队合作在量子点发光二极管研究方

    近日,浙江大学金一政课题组、王林军课题组与华南理工大学黄飞 / 应磊团队合作,在高性能蓝、绿光量子点发光二极管( QLED )的开发上取得进展。研究者揭示了无机量子点 / 有机高...
    2022-05-23
    浙大金一政团队和华南理工大学黄飞/应磊团队合作在量子点发光二极管研究方

    厦大张荣教授团队与台交大郭浩中教授团队合作:Micro LED色转换研究领新进展

    随着人工智能、图像识别和5G通信技术的快速发展,增强现实(AR)和虚拟现实(VR)技术正以惊人的速度发展。新冠疫情背景下,远程办公和远程消费交互日益增加,市场再次将注意力转向...
    2022-07-27
    厦大张荣教授团队与台交大郭浩中教授团队合作:Micro LED色转换研究领新进展

    剖析丨InP衬底的制备以及产业化现状

    磷化铟(InP)目前已成为光电器件和微电子器件不可或缺的重要半导体材料。本期1°姐将为大家详细介绍InP单晶衬底的制备以及产业化现状。 一、InP性能简介 磷化铟(InP) 是一种具有...
    2021-05-23
    剖析丨InP衬底的制备以及产业化现状

    网站栏目